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Appendix 1 
 
The DM owns an asset with liquidation value L which earns interest at the rate of return rr until the 
forced liquidation date in period T. We start in period 1 with a cash flow x1. Thereafter the cash flow 
follows a binomial random walk: given x in period t the cash flow in period t+1 is either x+h (with 
probability p) or x-h (with probability 1-p). 
 
I start with Objective Function 1: the maximisation of the expectation of the sum of the utilities of 
the payoffs (cash flow plus liquidation when it occurs). 
    
There are various nodes that the DM may reach. In period 1 there is just 1; in period 2 there are 2;...;  
in period t, there are t of them;…, in period T there are T of them. The total number of such nodes is 
1+2+…+T = T(T+1)/2. We could refer to these nodes with a pair of numbers (t,j) where j goes from 1 
to t in period t. A better way is to define k nodes which go sequentially from 1 to T(T+1)/2. In period 
1, k is just 1; in period 2, k is 2 and 3; in period t, k goes from (t-1)t/2+1 to t(t+1)/2; in period T, k 
goes from (T-1)T/2+1 to T(T+1)/2. I call the total number of k nodes totk. This is equal to T(T+1)/2. 
 
At each k node there is an associated cash flow. Letting xk denote the cash flow at the node k, we 
have from the binomial process we have the following Matlab code: 
 
for t=2:1:T                     % going through the periods 
    for j=1:1:t                 % for each period going through the j nodes 
        k=(t-1)*t/2+j;          % calculating the corresponding k node 
        x(k)=x(1)+(t-2*j+1)*h;  % calculating the cash flow at that k node 
    end 
end 

 

Now let us find the solution for Objective Function 1, where the objective is the maximisation of the 
expected value of the sum of the utilities. I use the following notation. dk is the optimal decision at 
node k. EVk is the expected value of the objective function as viewed from node k. At this node the 
previous elements u(x1) + u(x2) + … are given and known and therefore do not enter the objective 
function. 
 
Denote by lqvk the liquidation value of liquidating at that node, and by ctvk the continuation 
(expected) value at that node. 
 

From node k the DM either moves Up or Down. We need to know to which k nodes these moves 
take us. From the tree (see Figure 1) it can be seen that if at node k in period t moving Up takes the 
DM to node k+t in period t+1, while moving Down takes the DM to node k+t+1 in period t+1. 
 
We work backwards starting in period T. Here there are no decisions to take and we have simply: 
for k between (T-1)T/2+1 and T(T+1)/2 that 
 

(1) EVk = u(xk+L)   This is for the period T nodes. 
 
Now work backwards. Here I take the general case of k<=(T-1)T/2 (that is in periods 1 through T-1). I 
first write the solution in equations and then transfer it into Matlab code. The backward induction 
starts in period T-1 and then works backwards to period 1. In period t (Note that in period t the 
index k takes values from (t-1)t/2+1 to t(t+1)/2 inclusive) the relevant equations are: 
 

(2) ctvk = u(xk) + pEVk+t + (1-p)EVk+t+1 

(3) lqvk = u(xk + LrrT-t) 
(4) dk = 1 if ctvk ≥ lqvk; 0 otherwise (I am assuming a DM who is indifferent continues). 
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(5) EVk = max[ctvk,lqvk] 
 
The Matlab code follows (note I use here a generic utility function; in the code we distinguish 
between CRRA and CARA). 
 
for t=T-1:-1:1                             % for each period working back 

for k=1+t*(t-1)/2:1:t*(t+1)/2        $ for the k nodes in that period 
      ctv(k)=u(x(k))+p*EV(k+t)+(1-p)*EV(k+t+1); % continuation value 
            lqv(k)=u(L*(rr^(T-t))+x(k));              % liquidation value 
            if lqv(k)<=ctv(k)              % if continuing is better 
               EV(k)=ctv(k);            % the continuation value is EV 
                  d(k)=1;                  % decision is to continue 
            end 
            if lqv(k)>ctv(k)               % if liquidating is better 
                EV(k)=lqv(k);            % the liquidation value is EV 
                  d(k)=0;                  % the decision is to liquidate 
            end 

end 
end 

 
Now let me turn to Objective Function 2, where the objective function is the maximisation of the 
expected utility of the sum of payoffs. This means that the optimal decision at any k-node depends 
not only on that node but also the accumulated cash flows at that node. Note crucially that knowing 
one is at a particular k-node is not sufficient to know the accumulated cash flow at that node; this 
latter depends upon the route by which the DM has reached that node. For example consider k=5 in 
t=3. This node could have been reached by going Up from period 1 to 2 and then Down from period 
2 to 3; or it could have been reached by going Down from period 1 to 2 and then Up from period 2 to 
3. In the former case the accumulated cash flow would be x1 + (x1+h) + x1 = 3x1+h; in the latter case 
the accumulated cash flow would be x1 + (x1-h) + x1 = 3x1-h. In order to deal with this, I need to 
introduce what I call l-nodes, indicating not only which k-node the DM is at, but also the 
accumulated cash flow he or she has. I should note that two different l-nodes do not necessarily 
have different accumulated cash flows. 
 
How many l-nodes are there? It can be seen from Figure 1 that in period t there are a total of 2t-1 l-
nodes, half of them reached by going Up from the 2t-2 l-nodes in period t-1 and half of them reached 
by going Down from the 2t-2 l-nodes in period t-1. So the total number of l-nodes in a tree of length T 
is 1 + 2 + 22 + 23 + 24 + …+ 2T-1 = 2T-1. We need to calculate the optimal decisions at all of these with 
the exception of the 2T-1 nodes in period T where the only decision is to stop. So we have (where the 
subscript now is the l-node):  
 

(6) dl = 0 if 2T-2 + 1 ≤ l ≤ 2T-1.  
 
Also we have (in the final period if it is reached) 
 

(7) EVl = u(Xl + L) if 2T-2 + 1 ≤ l ≤ 2T-1where Xl denotes the accumulated cash flow at node l, and 
EVl denotes the value of the objective function at node l. 

 
Now the optimisation procedure is straightforward. We already have the (default) decisions in the 
final period and the Expected Value of the objective function at each of the final period l-nodes. So 
we can write (recall that the vector upl(l) tells us to which l-node a movement Up from node l takes 
the DM, and dnl(l) tells us to which l-node a movement Down takes the DM from node l): 
 
For all the other l-nodes in periods t<T we have: 
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(8)  ctvl = pEVupl(l)  +  (1-p)EVdnl(l) 
(9)  lqvl = u(Xl + LrrT-t) 
(10)  dl = 1 if ctvl ≥ lqvl; 0 otherwise (I am assuming a DM who is indifferent continues). 
(11)  EVl = max[ctvl,lqvl] 

 
Note that in these expressions the value of t is that corresponding to the period in which that l-node 
is in. 
 

Let me number the l nodes so that we have the following. I am using the numbering in the Matlap 
program OptStop4 in the appropriate directory. 
 

t k e(k) the 
number 

of l 
nodes 

in the k 
node 

l up l 
node 

in k node down l-
node 

in k node 

1 1 1 1 2 2 3 3 

2 2 1 2 4 4 6 4 

3 1 3 5 5 7 6 
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4 1 4 8 7 11 8 

5 2 5 9 8 13 9 

6 10 8 14 9 

6 1 7 12 9 15 10 
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7 1 8 16 11 20 12 

8 3 9 17 12 24 13 

10 18 12 25 13 

11 19 12 26 13 

9 3 12 21 13 28 14 

13 22 13 29 14 

14 23 13 30 14 

10 1 15 27 14 31 15 
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11 1 16 32 16 37 17 

12 4 17 33 17 44 18 

18 34 17 45 18 

19 35 17 46 18 

20 36 17 47 18 

13 6 21 38 18 52 19 

22 39 18 53 19 

23 40 18 54 19 

24 41 18 55 19 

25 42 18 56 19 

26 43 18 57 19 

14 4 27 48 19 59 20 

28 49 19 60 20 

29 50 19 61 20 

30 51 19 62 20 

15 1 31 58 20 63 21 

 
 
 
So the implied tree and the j, k and l nodes are as follows. 
 
1 (1) 2 (2 to 3) 3 (4 to 7) 4 (8 to 15) 5 (16 to 31) 6 (32 to 63) 

     1; 16; 32 

    1; 11; 16  

   1; 7; 8  2; 17; 33, 34, 35, 36, 37 

  1; 4; 4  2; 12; 17, 18, 19,20  

 1; 2; 2  2; 8; 9, 10, 11   3; 18; 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 

1; 1; 1  2; 5; 5, 6  3; 13; 21, 22, 23, 24, 25, 26  

 2; 3; 3  3; 9; 12, 13, 14  4; 19; 48, 49, 50, 51, 52,53,54, 55, 56, 57 

  3; 6; 7  4; 14; 27, 28, 29, 30  



4 
 

   4; 10; 15  5; 20;  58, 59, 60, 61, 62 

    5; 15;  31  

     6; 21; 63 

 
The numbers in the top row are the t-values. 
At each node, the first number is what I call the j-value; the second number is the k-node; and all the 
other numbers are the l-nodes. Of these other numbers, the ones in normal font are the l-nodes 
reached by coming DOWN from the previous period, and those in italics those reached by coming 
UP. 
 
So if we number the l nodes this way, it is nice and simple: l goes up to 2l and goes down to 2l+1, for 
all l from 1 to 2T-2-1 (up to the penultimate period)      
 
Moreover the accumulated cash flow at node l is the cash flow in the associated k node plus the 
accumulated cash flow in the k node from where it came. 
 

(12)       X(l) = X(l/2)+x(k)  if l is even 
(13)       X(l) = X((l-1)/2)+x(k)  if l is odd 

where k is the k node in which l is. 
We should do this for all l from 2 to 2T-1. 
 
Now how to find the k node in which a particular l value is.  The following Matlab code appears to 
work (it is in testclk.m). Note that there are (t-1)!/[(j-1)!(t-j)!] l nodes in node (t,j). This expression is 
calculated using nchoosek in Matlab. 
 
l=0; 

k=0; 

clk(1)=1; 

for t=2:1:T 

 for j=1:1:t 

  k=k+1; 

  nl=nchoosek(t-1,j-1); 

   for ll=1:1:nl 

    l=l+1; 

    clk(l)=k; 

end 

end 

end 

 

We also need to know (see above for the liquidation values) the t node corresponding to a particular 
k node. Here is the Matlab code the vector ckt: 
 
%now we need to find the t value corresponding to any k value 
k=0; 
for t=1:1:T 
    for j=1:1:t 
        k=k+1; 
        ckt(k)=t; 
    end 
end 

 
%this does the important stuff 
for l=2^(T-1):1:2^T-1;  %these are the period T nodes 
    if rt==1 
       EV(l)=crra(L+X(l),r); 
    end 
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    if rt==2 
       EV(l)=cara(L+X(l),r); 
    end  
end 

 
%this is the important recursion for the other periods going backwards 

% this is for a generic utility function 
for t=T-1:-1:1 
    for l=2^(t-1):1:2^t-1 
        kk=clk(l); 
        tt=ckt(kk); 
        ctv(l)=p*EV(2*l)+(1-p)*EV(2*l+1); 
        lqv(l)=u(L*(rr^(T-tt))+X(l)); 
        if lqv(l)<=ctv(l) 
            EV(l)=ctv(l); 
            d(l)=1; 
        end 
        if lqv(l)>ctv(l) 
            EV(l)=lqv(l); 
            d(l)=0; 
        end 
    end 
end 

 
 
 
Finally let me show the decisions of a DM with a rolling strategy. Here we assume risk-neutrality. 
 
We need to start with the fully-optimal strategy – backwardly inducting from the end. Let us denote 
the Expected Value to the decision-maker of fully optimising if he or she is at node k by EVT,k (the first 
argument indicating the horizon used by the decision-maker and the second the node). Let us 
denote by DT,k the optimal decision, taking the value 1 for continuing and the value 0 for liquidating. 
We work backwards. I am now making the notation consistent with the Matlab code. 
In T we have (ignoring the accumulated cash flows which are given and the decision-maker will get 
anyhow): 

(14)    DT,k = 0                  for k from 1+(T-1)T/2 to T(T+1)/2 
(15)    EVT,k = xk + L    for k from 1+(T-1)T/2 to T(T+1)/2 

 
Now we work backwards, from t=T-1 to t=1, using the following recursion. Note that if the DM is at 
node k in period t, then going up arrives at node k+t in period t+1, and going down arrives at node 
k+t+1 in period t+1.  

(16)    DT,k = 0 if xk + Lr(T-t) > pEVT,k+t + (1-p)EVT,k+t+1  
                       = 1 if xk + Lr(T-t)≤ pEVT,k+t + (1-p) EVT,k+t+1 

(17)    EVT,k = max[xk + Lr(T-t), xtj + pEVT,k+t + (1-p) EVT,k+t+1] 
So we have the optimal decision at each cash flow node. 
 
Now let us consider someone who has a rolling strategy with an horizon of S periods – so in period t 
works as if he or she has to liquidate in period t+S or in period T whichever is the sooner (the true 
liquidation date is T). Let us use dS,T,k to denote the decision of such a decision-maker at node k, the 
first argument indicating the rolling horizon, the second the true horizon and the third the node. 
 
Be careful about the notation: DT,k denotes the optimal decision at node k for an optimising decision 
who has to liquidate in period T. In contrast dS,T,k denotes the decision at node k of a DM with a 
rolling horizon of S periods ahead in a problem where he/she actually has to liquidate in period T but 
wrongly working on the presumption that they have to liquidate S periods ahead. 
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It follows that we have the following results: 
 

(18)       If t ≥ T-S then dS,T,k = DT,k because the true horizon is within the correct horizon. 
(19)       If t < T-S then dS,T,k = Dt+s,k because the DM is optimising under the (wrong) assumption 

that he/she has to liquidate in period t+S. 
  
 


